
India, Pakistan, Water and the Indus Basin: Old Problems, New Complexities

Ahmad Rafay Alam

Saleem, Alam & Co.

Indus Basin & Treaty

- Basin withdrawal benefits 300 million
- Source of ½ Indian grain supply
- Employs ~ 40% Pak labor force

- Under IWT (1960):
 - India to "let flow" water of Western Rivers
 - India permitted non-consumptive run-ofthe-river hydropower plants subject to restrictions protecting Pakistan's right

Basin Issues Wullar Barrage

- Navigation lock/control structure to provide year-round navigation (and 0.3MAF of storage)
- Pakistan claims:
 - A barrage may damage Pakistan's own triple-canal project linking Jhelum and Chenab with the Upper Bari Doab Canal;
 - A barrage would be a security risk enabling the Indian Army to make crossing the river either easy or difficult, at will, by the controlled release of water;
 - After constructing the dam, India would control the flow of water into the Jhelum, creating drought and flood situations at will in Azad Kashmir and Pakistan; and
 - It would ruin Pakistan's agriculture
- Not part of IWT dispute resolution process
- Forms part of "Composite Dialogue"

Basin Issues Baghliar

- Neutral Expert called upon to decide upon "Difference" concerning design of gated spillways
- Pakistan argued the design allowed India to control flow of the Kishenganga
- Neutral Expert decided that a gated spillway was necessary keeping in view new technical norms and standards and expected sediment yields

Treaty Issues Kishenganga

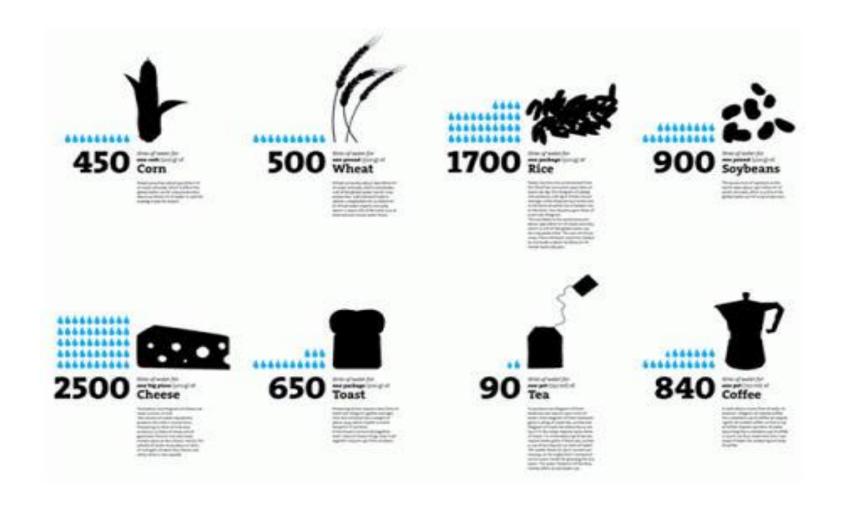
- ICA called to settled "dispute" on whether the Treaty permitted drawdown flushing for sediment control
- Pakistan argued design would increase catchment of river and deprive it of its water rights
- Court held:
 - 9m3/s of natural flow of river necessary to maintain its environment
 - It "could not accept" India's argument and held "India right to generate hydro-electric power on the Western Rivers can meaningfully be exercised without drawdown flushing"
 - Baghliar decision limited only to facts of "difference"
 - Decision on drawdown flushing "extends beyond the specifics of the [Kishenganga dam] to other, future, Run-of-River Plants."
 - Treaty does not give Parties right to select Neutral Expert; nor does it bar ICA from determining technical questions

Rights-based Assertions vs. Needs-based Solutions

Follows "equitable and reasonable utilization" defined in UN Watercourse Convention, which includes:

- (a) Geographic, hydrographic, hydrological, climatic, ecological and other factors of a natural character;
- (b) The social and economic needs of the watercourse States concerned;
- (c) The population dependent on the watercourse in each watercourse State;
- (d) The effects of the use or uses of the watercourses in one watercourse State on other watercourse States;
- (e) Existing and potential uses of the watercourse;
- (f) Conservation, protection, development and economy of use of the water resources of the watercourse and the costs of measures taken to that effect;
- (g) The availability of alternatives, of comparable value, to a particular planned or existing use

Threats & Vulnerabilities


- Climate change
 - Flooding and variation in Monsoon
 - Both countries have different positions at COP
 - A transboundary challenge & opportunity
- Increased use of surface and groundwater
 - IWT a surface water document
 - Changing habits & water dependence
- Identification of 33,832MW and 25,000MW hydropower potential by India and Pakistan, respectively
- Not all riparians included

Country	India	Pakistan	Total
Average long-term available renewable water supplies in the IRB	97 km³/year	190 km³/year	287 km³/year
Estimated renewable surface water supplies in the IRB	73 km³/year	160-175 km³/ year	239-258 km³/year
Estimated renewable groundwater supplies in the IRB	27 km³/year	63 km³/year	90 km³/year
Estimated total water withdrawals in the IRB	98 km³/year	180-184 km³/ year	257-299 km³/year
Estimated total surface water withdrawals in the IRB	39 km³/year	128 km³/year	
Estimated total groundwater withdrawals in the IRB	55 km³/year	52-62 km³/year	

Note: Figures for surface and groundwater supplies may not sum evenly to figures for total renewable water resources because a large fraction of groundwater and surface water resources overlap, so that separate supplies cannot be absolutely distinguished.

Source: Derived from FAO, Irrigation in Southern and Eastern Asia in Figures: AQUASTAT Survey 2011, Karen Frenken ed. (Rome: FAO, 2012); A.N. Laghari et al., "The Indus basin in the framework of current and future resources management," Hydrology and Earth Systems Sciences 16, no.4 (2012); Bharat R. Sharma et al., "Indo-Gangetic River Basins: Summary Situation Analysis," International Water Management Institute, New Delhi Office, July 2008.

An Aside re Virtual Water

Did you know?

Do you want to know?

What's the future of IWT?

- Article VII (future cooperation)
 - Limitations on revision
 - Diplomatic challenge
 - Indian bilateralism
 - What would you revise and how?
 - Impact of CPEC?
 - Has security architecture around IWT changed?